IPv6 – Global Implementation Observations and Update

Dean McDonald Director of Sales Engineering dean.mcdonald@nominum.com

Company Overview

Our People

Our Experience

- Invented the DNS
- Developed 90% of the world's DNS software
- Architected leading DHCP product
- More than a decade supporting network operators
- Top fixed and mobile operators, enterprise & government customers
- More than 40 patents & patents pending

- **Our Technology**
- World-class DNS/DHCP engines
- Revolutionary N2 Platform
- Open IDEAL ecosystem of application providers

Our mobile customer base includes:

Our fixed broadband customer base includes:

Business Drivers for IPv6 Migration

Business Benefits of IPv6

1. Revenue Growth

- Accommodates dramatic growth in IP-enabled devices
 - Connected Home, "The Internet of Things" (M2M), etc
- Support growth into new or expanding markets

2. Customer Loyalty

- Better experience accessing popular connection-intensive content
 - E.g. Facebook, Google Maps
- Better peer to peer gaming

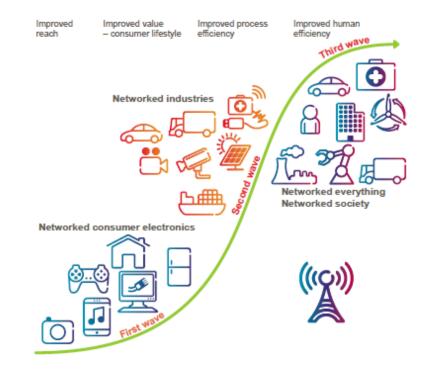
3. Network Efficiency

- "Jumbograms" enable high performance applications
 - Moves from 1,536 bytes in IPv4 to 65,536 bytes in IPv6
 - Lower overhead for high performance data transfers for video and cloud access
- Multi-cast efficiency improvements

Business Benefits of IPv6 (Continued)

4. Enterprise agility

- Eliminates NAT bottlenecks between corporate divisions
 - IPv6 corporate networks don't require overlapping private address spaces
 - This eliminates need to translate between conflicting private address spaces
 - Reduces cost of supporting conflicting network ranges after M&A
- Transparent support for connectivity through multiple ISPs


5. Device-specific analytics and policies

- Identifying which devices are infected
- Applying per-device policies
- Parental controls
- Firewall filters

The Demand for Addresses is Exploding

By 2020 estimates of more than **50 billion connected devices** – taking connected devices to mass market and profitability.

- Home automation
- Home security
- IPTV
- Smart meters
- Automobiles
- Etc.

Source: Ericsson white paper 284 23-3149 Uen | February 2011



What Moved the Market Movers?

Business	Concern(s)	Advantage(s)
DT Terastream	IPv4 starvation, reducing cost	Network optimization (FTTH)
Bechtel	multi-national globalization	growth emerging markets
Comcast	organic growth	answer for IPv4 exhaust as devices proliferate
T-Mobile USA	device compatibility	thought leader
Google	global reach	Internet growth, better app support, per-device analytics
Akamai	device proliferation	traffic optimization

IPv6 Adoption is Low but Accelerating

Why DNS and DHCP are critical to IPv6

IPv6 Needs Names More than IPv4

- IPv6 addresses are too long to type or remember
 - E.g. 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Devices that need to be easily identified need to have names
- IPv6 makes it possible for the customer to configure devices to be globally accessible
- Devices that need to be globally accessible need to have global names
- mDNS solves the problem of identifying devices on the local network
- mDNS is a local protocol and does not work globally
- So with IPv6, the need to keep the DNS up to date with the address of every node becomes paramount

IPv6 Impact to DNS

- Increased Performance Requirements
 - When customers begin serving both IPv4 and IPv6 client DNS requests, DNS traffic could increase dramatically
 - MacOS issues AAAA queries and then falls back to A queries if no AAAA record
 - Windows Vista & Windows 7 will issue AAAA query if the client is configured with a publicly routable IPv6 address
- Additional Load on DNS Infrastructure
 - IPv6 increases memory use on caching and authoritative DNS servers
 - Makes pre-populating rDNS entries nearly impossible
 - DNS64 will require "synthesizing" responses

IPv6 Impact to Security

- IPv6 has several important security advantages
 - Sparse address space makes scattershot attacks infeasible
 - More modern protocol specs have security built in
 - Compliant IPv6 implementations include Ipsec
 - Cryptographically Generated Addresses (CGA)
- But also introduces several challenges
 - More addresses means attacks can be more agile
 - Blocking based on ranges can cause collateral damage
 - Technologies for pre-fix blocking dont yet exist in IPv6
 - Lack of standards

DHCP: Your View into the Network

- Why do we even need DHCPv6? Doesn't stateless autoconfiguration make it obsolete?
- Stateless address allocation is currently specified for use on local networks, but has limitations
 - How do you identify nodes that need to be externally accessible?
 - What if you want to run a managed network?
 - How do you know what devices are using the network?
- DHCPv6 is needed for prefix delegation
 - Existing cable network IPv6 deployments use prefix delegation—it's not optional

DHCPv6 provides naming and configuration control.

- If DNS is paramount, where do we get the data?
- DHCP provides data as devices connect to the network
- Self-configured addresses (CGA and SLAAC) could be registered using DHCP
- PTR zone delegation is possible with DHCPv6 PD

Summary

1. IPv6 provides multiple business benefits

 New revenue, customer loyalty, network efficiency, business agility and device specific visibility and policies

2. DNS &DHCP are the logical place to start the transition

- Naming and numbering central to the transition
- Foundation for new revenue-generating service
- Next generation networks deserve next generation DNS & DHCP
- **3.** Nominum can help with the transition
 - Working with standards bodies to address last deployment issues
 - Guidance on deploying DNS & DHCP
 - Software designed to meet needs of demanding network operators
 - Integrated architecture enables efficiency, agility and differentiation

